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1 Weierstrass Approximation Theorem

Theorem 2.5 in Text asserts uniform convergence of the Fourier series of a continuous, piecewise
smooth, 27-periodic function. As an application, we now prove a theorem of Weierstrass con-
cerning the approximation of continuous functions by polynomials. It will be accomplished in
three steps: First we approximate the given function by a continuous, piecewise linear function,
then extend it to be an even function and finally apply Theorem 2.5.

Proposition 3.1. Let f be a continuous function on [0,7]. For every ¢ > 0, there exists a
continuous, piecewise linear function g such that |f(z) — g(z)| < €/2 , Vx € [0, 7] . Moreover,

9(0) = f(0) and g(m) = f ().

Proof. As f is continuous on [0, ], it is also uniformly continuous on [0, 7]. For every € > 0,
there exists some ¢ such that |f(z) — f(y)| < €/4 for z,y € [0,7],|x —y| < §. We partition
[0, 7] into subintervals I; = [a;, a;j11] whose length is less than ¢ and define g to be the piecewise
linear function satisfying g(a;) = f(a;) for all j. For = € [a;, a;11], ¢ is given by
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and the result follows.
Next we study how to approximate a continuous function by finite trigonometric series.

Proposition 3.2. Let f be a continuous function on [0,7]. For ¢ > 0, there exists a finite
trigonometric series h such that |f(z) — h(z)| <e, Vz €]0,7].

Proof. First we extend f to [—m, 7| by setting f(z) = f(—=z) (using the same notation) to
obtain a continuous function on [—m, 7| with f(—n) = f(w). By the previous proposition,
we can find a continuous, piecewise linear function g such that |f(x) — g(x)| < ¢/2 for all .
Since g(—m) = f(—m) = f(m) = g(7), g can be extended as an even, continuous, piecewise
smooth, 27-periodic function. (A piecewise linear function is clearly piecewise smooth.) By
Theorem 2.5 in Text, there exists some N such that |g — Syg(x)| < €/2 for all z. Therefore,
|f(x)—Sng(x)| < |f(x)—g(z)|+|g(x) — Sng(x)| < €/24¢/2 = . The proposition follows after
noting that every finite Fourier series is a finite trigonometric series.
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Theorem 3.3. (Weierstrass Approximation Theorem) Let f € Cla,b]. Given € > 0,
there exists a polynomial p such that

|f(x) —p(x)| <e, VYaclabl.

Proof. Consider [a,b] = [0, 7] first. Extend f to [—m, 7] by reflection as before and, for /2 > 0,
fix a finite trigonometric series h such that |f(x) — h(x)| < £/2. This is possible due to the
previous proposition. Here h is a finite cosine series ag/2 + )., an cosnz. Using the fact that

oo
(_1)n92n
cosf) = —_—
Z (2n)!
n=0
where the convergence is uniform on [—7, 7], each cosnz,n = 1,---, N, can be approximated
by polynomials. Putting all these polynomials together we obtain a polynomial p(x) satisfying

|h(x) —p(z)| < /2. Tt follows that |f(x) —p(z)| < |f(x) —h(z)|+ |h(x) —p(z)| <e/2+e/2 =¢.

When f is continuous on [a, b], the function ¢(t) = f (b_T“t + a) is continuous on [0, 7]. From
the last paragraph, we can find a polynomial p(¢) such that |¢(t) — p(t)| < € on [0, 7]. But then

T

the polynomial q(z) = p(;7 (z — a)) satisfies |f(x) — q(x)| = |¢(t) — p(t)| < € on [a,b].

Note. Weierstrass Approximation Theorem is the first result concerning how to approximate
functions by simpler ones. There is a branch of mathematics called Approximation Theory.
Direct improvements on this theorem include the Bernstein’s theorem and Jackson’s theorem.
Google for details if you are interested.

2  Weyl’s Equivdistribution Theorem

In the proof of this theorem, Weierstrass Approximation Theorem is used in one step. See
chapter 4 in Stein-Shakarchi.

3 Cesaro Mean and Fejér’s Theorem

Theorem 2.5 concerning the uniform convergence of Fourier series requires the function un-
der examination to be continuous, 2m-periodic and piecewise smooth. It was a main issue
to determine whether uniform convergence still holds without the piecewise smooth condition.
Eventually people constructed continuous, 2m-periodic functions whose Fourier series diverge at
some point, showing that the piecewise smooth condition cannot be removed completely. One
is referred to chapter 3 of Stein-Shakarchi and Part I, section 18, of Korner on these examples.
On the other hand, as recent as 1965, L. Carleson proved a major result which implies that the
Fourier series of any continuous, 27-periodic function converges to itself “almost everywhere”.

Going in another direction, one could relax the uniform/pointwise convergence of Fourier series
by convergence in mean. Then a theorem of Fejér establishes mean convergence for every con-
tinuous, 2mw-periodic functions.
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Given an infinite series ) °  an, we denote its N-th partial sum to be sy = Zﬁfzo ayn. Its N-th

Cesaro sum is given by
So+ 81+ -+ sn

N +1

It is an exercise to show that sy converges implies o also converges (to the same limit), but the
converse is not true. For instance, taking {a,} = {-1,1,-1,1,---}, sy ={-1,0,-1,0,-1,0,--- }
diverges but oy = {-1,-1/2,-2/3,-2/4,-3/5,—-3/6,--- ,} converges to —1/2. Therefore,
convergence in Cesaro sum is weaker than the usual convergence.

ON =

Theorem 3.4 (Fejér’s Theorem). For every continuous, 27-periodic function, the Cesaro
sums of its Fourier series converges to it at every point.

Let Sy f(x) be the N-th partial sum of the Fourier series of f and oy f(x) be its N-th Cesaro
mean. We first obtain a formula for oy f. Recall that we have

1 [T sin(N+1/2)y
= — _— dy .
Sxie) = 5= [ ST ) dy
Using the formula
N )
N+ 1)y/2
Zsin(n +1/2)y = sin 2 + sin(l1+1/2)y+---+sin(N +1/2)y = i ( 2+ Jy/ )
o 2 sin®y/2
(see exercise)
1 ™ sin?(N + 1)y/2
= dy .
onf(@) 27 (N + 1) /_7r sin?y/2 f@+y)dy

When f(z) = 1, we know that S,1(z) = 1, hence ony1(x) =1 too. Using this we have

™

onf (@) - f(z) = / Fn(y) (F(x+y) — f(2)) dy | (1)

—T

where the Fejér’ kernel is given by

) 1
sin® (N + 5) 2
Fy(z) = 2n(N +1)sin 5%
0, z=0.

It is an even, continuous, 2w-periodic function. Unlike the Dirichlet’s kernel Dy (see Notes 1),
Fejér’s kernel is non-negative. On the other hand, we also have

/ Fy(y)dy=1, VYN2>1.

—T

Now we prove Fejér’s Theorem. As f is continuous on [—, ], it is uniformly continuous on
[, 7]. Given € > 0, we can fix some 0 such that |f(z + y) — f(x)| < /2 for y,|y| < ¢ and
x € [—m,m]. We estimate the right hand side of (1) by splitting the integral into over [—4d, d] and
over its outside. For the former we have
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On the other hand, since siny/2 is bounded from below by a positive number for y € [—m, =] U
[6,7], the function sin?(N + 1)/2y/sin?y/2 is bounded by some number K. Letting I =
(=7, ~8] U [6, 7] and M = sup |f],

IN

/ Fx()(f(z +y) — f(z)) dy
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Putting (2) and (3) together,

[ A+ - fanan| <5+

As the second term on the right tends to 0 as N — oo, we conclude that on f converges to f
uniformly as N goes to co. The proof of Fejér’s Theorem is completed.



