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1 Weierstrass Approximation Theorem

Theorem 2.5 in Text asserts uniform convergence of the Fourier series of a continuous, piecewise
smooth, 2π-periodic function. As an application, we now prove a theorem of Weierstrass con-
cerning the approximation of continuous functions by polynomials. It will be accomplished in
three steps: First we approximate the given function by a continuous, piecewise linear function,
then extend it to be an even function and finally apply Theorem 2.5.

Proposition 3.1. Let f be a continuous function on [0, π]. For every ε > 0, there exists a
continuous, piecewise linear function g such that |f(x)− g(x)| < ε/2 , ∀x ∈ [0, π] . Moreover,
g(0) = f(0) and g(π) = f(π).

Proof. As f is continuous on [0, π], it is also uniformly continuous on [0, π]. For every ε > 0,
there exists some δ such that |f(x) − f(y)| < ε/4 for x, y ∈ [0, π], |x − y| < δ. We partition
[0, π] into subintervals Ij = [aj , aj+1] whose length is less than δ and define g to be the piecewise
linear function satisfying g(aj) = f(aj) for all j. For x ∈ [aj , aj+1], g is given by

g(x) =
f(aj+1)− f(aj)

aj+1 − aj
(x− aj) + f(aj).

For x ∈ [aj , aj+1],

|f(x)− g(x)| =

∣∣∣∣f(x)− f(aj+1)− f(aj)

aj+1 − aj
(x− aj)− f(aj)

∣∣∣∣
≤ |f(x)− f(aj)|+

∣∣∣∣f(aj+1)− f(aj)

aj+1 − aj
(x− aj)

∣∣∣∣
≤ |f(x)− f(aj)|+ |f(aj+1)− f(aj)|

<
ε

4
+
ε

4
=
ε

2
,

and the result follows.

Next we study how to approximate a continuous function by finite trigonometric series.

Proposition 3.2. Let f be a continuous function on [0, π]. For ε > 0, there exists a finite
trigonometric series h such that |f(x)− h(x)| < ε, ∀x ∈ [0, π].

Proof. First we extend f to [−π, π] by setting f(x) = f(−x) (using the same notation) to
obtain a continuous function on [−π, π] with f(−π) = f(π). By the previous proposition,
we can find a continuous, piecewise linear function g such that |f(x) − g(x)| < ε/2 for all x.
Since g(−π) = f(−π) = f(π) = g(π), g can be extended as an even, continuous, piecewise
smooth, 2π-periodic function. (A piecewise linear function is clearly piecewise smooth.) By
Theorem 2.5 in Text, there exists some N such that |g − SNg(x)| < ε/2 for all x. Therefore,
|f(x)−SNg(x)| ≤ |f(x)− g(x)|+ |g(x)−SNg(x)| < ε/2 + ε/2 = ε. The proposition follows after
noting that every finite Fourier series is a finite trigonometric series.
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Theorem 3.3. (Weierstrass Approximation Theorem) Let f ∈ C[a, b]. Given ε > 0,
there exists a polynomial p such that

|f(x)− p(x)| < ε , ∀x ∈ [a, b].

Proof. Consider [a, b] = [0, π] first. Extend f to [−π, π] by reflection as before and, for ε/2 > 0,
fix a finite trigonometric series h such that |f(x) − h(x)| < ε/2. This is possible due to the
previous proposition. Here h is a finite cosine series a0/2 +

∑N
n=1 an cosnx. Using the fact that

cos θ =
∞∑
n=0

(−1)nθ2n

(2n)!
,

where the convergence is uniform on [−π, π], each cosnx, n = 1, · · · , N, can be approximated
by polynomials. Putting all these polynomials together we obtain a polynomial p(x) satisfying
|h(x)− p(x)| < ε/2. It follows that |f(x)− p(x)| ≤ |f(x)−h(x)|+ |h(x)− p(x)| < ε/2 + ε/2 = ε.

When f is continuous on [a, b], the function ϕ(t) = f( b−aπ t + a) is continuous on [0, π]. From
the last paragraph, we can find a polynomial p(t) such that |ϕ(t)− p(t)| < ε on [0, π]. But then
the polynomial q(x) = p( π

b−a(x− a)) satisfies |f(x)− q(x)| = |ϕ(t)− p(t)| < ε on [a, b].

Note. Weierstrass Approximation Theorem is the first result concerning how to approximate
functions by simpler ones. There is a branch of mathematics called Approximation Theory.
Direct improvements on this theorem include the Bernstein’s theorem and Jackson’s theorem.
Google for details if you are interested.

2 Weyl’s Equivdistribution Theorem

In the proof of this theorem, Weierstrass Approximation Theorem is used in one step. See
chapter 4 in Stein-Shakarchi.

3 Cesàro Mean and Fejér’s Theorem

Theorem 2.5 concerning the uniform convergence of Fourier series requires the function un-
der examination to be continuous, 2π-periodic and piecewise smooth. It was a main issue
to determine whether uniform convergence still holds without the piecewise smooth condition.
Eventually people constructed continuous, 2π-periodic functions whose Fourier series diverge at
some point, showing that the piecewise smooth condition cannot be removed completely. One
is referred to chapter 3 of Stein-Shakarchi and Part I, section 18, of Körner on these examples.
On the other hand, as recent as 1965, L. Carleson proved a major result which implies that the
Fourier series of any continuous, 2π-periodic function converges to itself “almost everywhere”.

Going in another direction, one could relax the uniform/pointwise convergence of Fourier series
by convergence in mean. Then a theorem of Fejér establishes mean convergence for every con-
tinuous, 2π-periodic functions.
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Given an infinite series
∑∞

n=0 an, we denote its N -th partial sum to be sN =
∑N

n=0 an. Its N -th
Cesàro sum is given by

σN =
s0 + s1 + · · ·+ sN

N + 1
.

It is an exercise to show that sN converges implies σN also converges (to the same limit), but the
converse is not true. For instance, taking {an} = {−1, 1,−1, 1, · · · }, sN = {−1, 0,−1, 0,−1, 0, · · · }
diverges but σN = {−1,−1/2,−2/3,−2/4,−3/5,−3/6, · · · , } converges to −1/2. Therefore,
convergence in Cesàro sum is weaker than the usual convergence.

Theorem 3.4 (Fejér’s Theorem). For every continuous, 2π-periodic function, the Cesàro
sums of its Fourier series converges to it at every point.

Let SNf(x) be the N -th partial sum of the Fourier series of f and σNf(x) be its N -th Cesàro
mean. We first obtain a formula for σNf . Recall that we have

SNf(x) =
1

2π

∫ π

−π

sin(N + 1/2)y

sin y/2
f(x+ y) dy .

Using the formula

N∑
n=0

sin(n+ 1/2)y = sin
y

2
+ sin(1 + 1/2)y + · · ·+ sin(N + 1/2)y =

sin2(N + 1)y/2

sin2 y/2
,

(see exercise)

σNf(x) =
1

2π(N + 1)

∫ π

−π

sin2(N + 1)y/2

sin2 y/2
f(x+ y) dy .

When f(x) ≡ 1, we know that Sn1(x) ≡ 1, hence σN1(x) ≡ 1 too. Using this we have

σNf(x)− f(x) =

∫ π

−π
FN (y) (f(x+ y)− f(x)) dy , (1)

where the Fejér’ kernel is given by

FN (z) =


sin2

(
N + 1

2

)
z

2π(N + 1) sin2 1
2z
, z 6= 0

0, z = 0.

It is an even, continuous, 2π-periodic function. Unlike the Dirichlet’s kernel DN (see Notes 1),
Fejér’s kernel is non-negative. On the other hand, we also have∫ π

−π
FN (y) dy = 1 , ∀N ≥ 1 .

Now we prove Fejér’s Theorem. As f is continuous on [−π, π], it is uniformly continuous on
[−π, π]. Given ε > 0, we can fix some δ such that |f(x + y) − f(x)| < ε/2 for y, |y| < δ and
x ∈ [−π, π]. We estimate the right hand side of (1) by splitting the integral into over [−δ, δ] and
over its outside. For the former we have∣∣∣∣∫ δ

−δ
FN (y)(f(x+ y)− f(x)) dy

∣∣∣∣ ≤ ε

2

∫ δ

−δ
FN (y) dy

<
ε

2

∫ π

−π
FN (y) dy

=
ε

2
. (2)
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On the other hand, since sin y/2 is bounded from below by a positive number for y ∈ [−π,−δ]∪
[δ, π], the function sin2(N + 1)/2y/ sin2 y/2 is bounded by some number K. Letting I =
[−π,−δ] ∪ [δ, π] and M = sup |f |,∣∣∣∣∫

I
FN (y)(f(x+ y)− f(x)) dy

∣∣∣∣ ≤ 1

2π(N + 1)

∫
I
K|f(x+ y)− f(x)| dy

≤ K × 2M × 2π

2π(N + 1)

=
2KM

N + 1
. (3)

Putting (2) and (3) together,∣∣∣∣∫ π

−π
FN (y)(f(x+ y)− f(x)) dy

∣∣∣∣ < ε

2
+

2KM

N + 1
.

As the second term on the right tends to 0 as N → ∞, we conclude that σNf converges to f
uniformly as N goes to ∞. The proof of Fejér’s Theorem is completed.


